Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genotypic Tannin Levels in Populus tremula Impact the Way Nitrogen Enrichment Affects Growth and Allocation Responses for Some Traits and Not for Others.

Identifieur interne : 001D26 ( Main/Exploration ); précédent : 001D25; suivant : 001D27

Genotypic Tannin Levels in Populus tremula Impact the Way Nitrogen Enrichment Affects Growth and Allocation Responses for Some Traits and Not for Others.

Auteurs : Franziska Bandau [Suède] ; Vicki Huizu Guo Decker [Suède] ; Michael J. Gundale [Suède] ; Benedicte Riber Albrectsen [Danemark]

Source :

RBID : pubmed:26488414

Descripteurs français

English descriptors

Abstract

Plant intraspecific variability has been proposed as a key mechanism by which plants adapt to environmental change. In boreal forests where nitrogen availability is strongly limited, nitrogen addition happens indirectly through atmospheric N deposition and directly through industrial forest fertilization. These anthropogenic inputs of N have numerous environmental consequences, including shifts in plant species composition and reductions in plant species diversity. However, we know less about how genetic differences within plant populations determine how species respond to eutrophication in boreal forests. According to plant defense theories, nitrogen addition will cause plants to shift carbon allocation more towards growth and less to chemical defense, potentially enhancing vulnerability to antagonists. Aspens are keystone species in boreal forests that produce condensed tannins to serve as chemical defense. We conducted an experiment using ten Populus tremula genotypes from the Swedish Aspen Collection that express extreme levels of baseline investment into foliar condensed tannins. We investigated whether investment into growth and phenolic defense compounds in young plants varied in response to two nitrogen addition levels, corresponding to atmospheric N deposition and industrial forest fertilization. Nitrogen addition generally caused growth to increase, and tannin levels to decrease; however, individualistic responses among genotypes were found for height growth, biomass of specific tissues, root:shoot ratios, and tissue lignin and N concentrations. A genotype's baseline ability to produce and store condensed tannins also influenced plant responses to N, although this effect was relatively minor. High-tannin genotypes tended to grow less biomass under low nitrogen levels and more at the highest fertilization level. Thus, the ability in aspen to produce foliar tannins is likely associated with a steeper reaction norm of growth responses, which suggests a higher plasticity to nitrogen addition, and potentially an advantage when adapting to higher concentrations of soil nitrogen.

DOI: 10.1371/journal.pone.0140971
PubMed: 26488414
PubMed Central: PMC4619582


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genotypic Tannin Levels in Populus tremula Impact the Way Nitrogen Enrichment Affects Growth and Allocation Responses for Some Traits and Not for Others.</title>
<author>
<name sortKey="Bandau, Franziska" sort="Bandau, Franziska" uniqKey="Bandau F" first="Franziska" last="Bandau">Franziska Bandau</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE 90183 Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE 90183 Umeå</wicri:regionArea>
<wicri:noRegion>SE 90183 Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Decker, Vicki Huizu Guo" sort="Decker, Vicki Huizu Guo" uniqKey="Decker V" first="Vicki Huizu Guo" last="Decker">Vicki Huizu Guo Decker</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE 90183 Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE 90183 Umeå</wicri:regionArea>
<wicri:noRegion>SE 90183 Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gundale, Michael J" sort="Gundale, Michael J" uniqKey="Gundale M" first="Michael J" last="Gundale">Michael J. Gundale</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE 90183 Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE 90183 Umeå</wicri:regionArea>
<wicri:noRegion>SE 90183 Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Albrectsen, Benedicte Riber" sort="Albrectsen, Benedicte Riber" uniqKey="Albrectsen B" first="Benedicte Riber" last="Albrectsen">Benedicte Riber Albrectsen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE 90183 Umeå, Sweden; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK 1871 Frederiksberg C, Denmark.</nlm:affiliation>
<country xml:lang="fr">Danemark</country>
<wicri:regionArea>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE 90183 Umeå, Sweden; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK 1871 Frederiksberg C</wicri:regionArea>
<wicri:noRegion>DK 1871 Frederiksberg C</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26488414</idno>
<idno type="pmid">26488414</idno>
<idno type="doi">10.1371/journal.pone.0140971</idno>
<idno type="pmc">PMC4619582</idno>
<idno type="wicri:Area/Main/Corpus">001A66</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001A66</idno>
<idno type="wicri:Area/Main/Curation">001A66</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001A66</idno>
<idno type="wicri:Area/Main/Exploration">001A66</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genotypic Tannin Levels in Populus tremula Impact the Way Nitrogen Enrichment Affects Growth and Allocation Responses for Some Traits and Not for Others.</title>
<author>
<name sortKey="Bandau, Franziska" sort="Bandau, Franziska" uniqKey="Bandau F" first="Franziska" last="Bandau">Franziska Bandau</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE 90183 Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE 90183 Umeå</wicri:regionArea>
<wicri:noRegion>SE 90183 Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Decker, Vicki Huizu Guo" sort="Decker, Vicki Huizu Guo" uniqKey="Decker V" first="Vicki Huizu Guo" last="Decker">Vicki Huizu Guo Decker</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE 90183 Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE 90183 Umeå</wicri:regionArea>
<wicri:noRegion>SE 90183 Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gundale, Michael J" sort="Gundale, Michael J" uniqKey="Gundale M" first="Michael J" last="Gundale">Michael J. Gundale</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE 90183 Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE 90183 Umeå</wicri:regionArea>
<wicri:noRegion>SE 90183 Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Albrectsen, Benedicte Riber" sort="Albrectsen, Benedicte Riber" uniqKey="Albrectsen B" first="Benedicte Riber" last="Albrectsen">Benedicte Riber Albrectsen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE 90183 Umeå, Sweden; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK 1871 Frederiksberg C, Denmark.</nlm:affiliation>
<country xml:lang="fr">Danemark</country>
<wicri:regionArea>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE 90183 Umeå, Sweden; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK 1871 Frederiksberg C</wicri:regionArea>
<wicri:noRegion>DK 1871 Frederiksberg C</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (genetics)</term>
<term>Biomass (MeSH)</term>
<term>Eutrophication (physiology)</term>
<term>Forests (MeSH)</term>
<term>Nitrogen (metabolism)</term>
<term>Photosynthesis (physiology)</term>
<term>Plant Leaves (chemistry)</term>
<term>Plant Roots (chemistry)</term>
<term>Plant Shoots (chemistry)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
<term>Populus (metabolism)</term>
<term>Soil (chemistry)</term>
<term>Tannins (genetics)</term>
<term>Tannins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adaptation physiologique (génétique)</term>
<term>Azote (métabolisme)</term>
<term>Biomasse (MeSH)</term>
<term>Eutrophisation (physiologie)</term>
<term>Feuilles de plante (composition chimique)</term>
<term>Forêts (MeSH)</term>
<term>Photosynthèse (physiologie)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Pousses de plante (composition chimique)</term>
<term>Racines de plante (composition chimique)</term>
<term>Sol (composition chimique)</term>
<term>Tanins (génétique)</term>
<term>Tanins (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Tannins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Nitrogen</term>
<term>Tannins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plant Leaves</term>
<term>Plant Roots</term>
<term>Plant Shoots</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Pousses de plante</term>
<term>Racines de plante</term>
<term>Sol</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Adaptation physiologique</term>
<term>Populus</term>
<term>Tanins</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Azote</term>
<term>Populus</term>
<term>Tanins</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Eutrophisation</term>
<term>Photosynthèse</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Eutrophication</term>
<term>Photosynthesis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Forests</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biomasse</term>
<term>Forêts</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plant intraspecific variability has been proposed as a key mechanism by which plants adapt to environmental change. In boreal forests where nitrogen availability is strongly limited, nitrogen addition happens indirectly through atmospheric N deposition and directly through industrial forest fertilization. These anthropogenic inputs of N have numerous environmental consequences, including shifts in plant species composition and reductions in plant species diversity. However, we know less about how genetic differences within plant populations determine how species respond to eutrophication in boreal forests. According to plant defense theories, nitrogen addition will cause plants to shift carbon allocation more towards growth and less to chemical defense, potentially enhancing vulnerability to antagonists. Aspens are keystone species in boreal forests that produce condensed tannins to serve as chemical defense. We conducted an experiment using ten Populus tremula genotypes from the Swedish Aspen Collection that express extreme levels of baseline investment into foliar condensed tannins. We investigated whether investment into growth and phenolic defense compounds in young plants varied in response to two nitrogen addition levels, corresponding to atmospheric N deposition and industrial forest fertilization. Nitrogen addition generally caused growth to increase, and tannin levels to decrease; however, individualistic responses among genotypes were found for height growth, biomass of specific tissues, root:shoot ratios, and tissue lignin and N concentrations. A genotype's baseline ability to produce and store condensed tannins also influenced plant responses to N, although this effect was relatively minor. High-tannin genotypes tended to grow less biomass under low nitrogen levels and more at the highest fertilization level. Thus, the ability in aspen to produce foliar tannins is likely associated with a steeper reaction norm of growth responses, which suggests a higher plasticity to nitrogen addition, and potentially an advantage when adapting to higher concentrations of soil nitrogen. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26488414</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>07</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2015</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Genotypic Tannin Levels in Populus tremula Impact the Way Nitrogen Enrichment Affects Growth and Allocation Responses for Some Traits and Not for Others.</ArticleTitle>
<Pagination>
<MedlinePgn>e0140971</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0140971</ELocationID>
<Abstract>
<AbstractText>Plant intraspecific variability has been proposed as a key mechanism by which plants adapt to environmental change. In boreal forests where nitrogen availability is strongly limited, nitrogen addition happens indirectly through atmospheric N deposition and directly through industrial forest fertilization. These anthropogenic inputs of N have numerous environmental consequences, including shifts in plant species composition and reductions in plant species diversity. However, we know less about how genetic differences within plant populations determine how species respond to eutrophication in boreal forests. According to plant defense theories, nitrogen addition will cause plants to shift carbon allocation more towards growth and less to chemical defense, potentially enhancing vulnerability to antagonists. Aspens are keystone species in boreal forests that produce condensed tannins to serve as chemical defense. We conducted an experiment using ten Populus tremula genotypes from the Swedish Aspen Collection that express extreme levels of baseline investment into foliar condensed tannins. We investigated whether investment into growth and phenolic defense compounds in young plants varied in response to two nitrogen addition levels, corresponding to atmospheric N deposition and industrial forest fertilization. Nitrogen addition generally caused growth to increase, and tannin levels to decrease; however, individualistic responses among genotypes were found for height growth, biomass of specific tissues, root:shoot ratios, and tissue lignin and N concentrations. A genotype's baseline ability to produce and store condensed tannins also influenced plant responses to N, although this effect was relatively minor. High-tannin genotypes tended to grow less biomass under low nitrogen levels and more at the highest fertilization level. Thus, the ability in aspen to produce foliar tannins is likely associated with a steeper reaction norm of growth responses, which suggests a higher plasticity to nitrogen addition, and potentially an advantage when adapting to higher concentrations of soil nitrogen. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bandau</LastName>
<ForeName>Franziska</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE 90183 Umeå, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Decker</LastName>
<ForeName>Vicki Huizu Guo</ForeName>
<Initials>VH</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE 90183 Umeå, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gundale</LastName>
<ForeName>Michael J</ForeName>
<Initials>MJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE 90183 Umeå, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Albrectsen</LastName>
<ForeName>Benedicte Riber</ForeName>
<Initials>BR</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE 90183 Umeå, Sweden; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK 1871 Frederiksberg C, Denmark.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>10</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013634">Tannins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="N">Adaptation, Physiological</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005068" MajorTopicYN="N">Eutrophication</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065928" MajorTopicYN="N">Forests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013634" MajorTopicYN="N">Tannins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>12</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>10</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>10</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>10</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>7</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26488414</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0140971</ArticleId>
<ArticleId IdType="pii">PONE-D-14-52751</ArticleId>
<ArticleId IdType="pmc">PMC4619582</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>BMC Plant Biol. 2008 Jul 22;8:82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18647399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2011 Sep;72(13):1551-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21354580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2004 Mar;139(1):55-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14740291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(5):e37679</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22662190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2013 Jun;16(6):791-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23601188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 1999 Aug;86(8):1154-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10449395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1997 Jun;111(1):99-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2012 Nov;170(3):695-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22652923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;169(3):561-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16411958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2001 Feb;126(3):371-379</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28547451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 May 16;320(5878):889-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18487183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2005 Sep;145(2):298-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15959818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Mar;201(4):1263-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24491114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ambio. 2005 Feb;34(1):20-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15789514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2011 Aug;37(8):857-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21748301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2006 Jul;7(7):510-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16778835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2001 Jul;27(7):1289-313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11504029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2006 Jun;148(2):293-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16468055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Q Rev Biol. 2003 Mar;78(1):23-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12661508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2009 May;160(1):119-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19214586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(12):3443-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19516073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;176(3):623-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17725548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2009 Jun;35(6):664-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19462207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2007 Feb;10(2):135-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17257101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Appl. 2010 Jan;20(1):30-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20349829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1987 Oct;73(4):513-517</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28311966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Oct 09;9(10):e107189</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25299342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2014 May;34(5):471-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24852570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Feb;169(2):945-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15489521</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Danemark</li>
<li>Suède</li>
</country>
</list>
<tree>
<country name="Suède">
<noRegion>
<name sortKey="Bandau, Franziska" sort="Bandau, Franziska" uniqKey="Bandau F" first="Franziska" last="Bandau">Franziska Bandau</name>
</noRegion>
<name sortKey="Decker, Vicki Huizu Guo" sort="Decker, Vicki Huizu Guo" uniqKey="Decker V" first="Vicki Huizu Guo" last="Decker">Vicki Huizu Guo Decker</name>
<name sortKey="Gundale, Michael J" sort="Gundale, Michael J" uniqKey="Gundale M" first="Michael J" last="Gundale">Michael J. Gundale</name>
</country>
<country name="Danemark">
<noRegion>
<name sortKey="Albrectsen, Benedicte Riber" sort="Albrectsen, Benedicte Riber" uniqKey="Albrectsen B" first="Benedicte Riber" last="Albrectsen">Benedicte Riber Albrectsen</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D26 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001D26 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26488414
   |texte=   Genotypic Tannin Levels in Populus tremula Impact the Way Nitrogen Enrichment Affects Growth and Allocation Responses for Some Traits and Not for Others.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26488414" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020